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Gaussian, Non-Gaussian Critical 
Fluctuations in the Curie-Weiss Model 
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It is known that at the critical temperature the Curie-Weiss mean-field model 
has non-Gaussian fluctuations and that "internal fluctuations" can be Gaussian. 
Here we compute the distribution of the q-mode magnetization fluctuations as 
a function of the temperature, the wave vector q, and a fading out external field. 
We obtain new classes of probability distributions generated by this external 
field as well as new critical behavior in terms of its rate of fading out. We discuss 
also the susceptibility as the limit q tending to zero. 

KEY WORDS: Curie-Weiss model; critical probability distributions; suscep- 
tibility; critical external fields; modulated fluctuations. 

1. INTRODUCTION 

In  the classical  C u r i e - W e i s s  mean- f ie ld  m o d e l  of  f e r r o m a g n e t i s m  and  in 

fact for all  mean- f ie ld  type  of  in terac t ions ,  it was shown  s o m e  t ime ago  (~'2) 

tha t  one  has  n o n - G a u s s i a n  cri t ical  f luc tua t ion  dis t r ibut ions .  T h e  s i tua t ion  

for q u a n t u m  mean- f ie ld  m o d e l s  is no t  different.  (3) This  is a man i fes t a t ion  of  

the cr i t ical  b e h a v i o r  expressed in te rms  of  p robab i l i s t i c  results. 

M o r e  recent ly  (4) the presence  o f  a subs tan t ia l  G a u s s i a n  e l emen t  at the 

cri t ical  po in t  was pu t  fo rward ,  by showing  tha t  " f luc tua t ions  wi th in  the 

f luc tua t ing  field are  G a u s s i a n , "  as the s t a t emen t  was fo rmula ted .  O u r  a t ten-  

t ion was a t t r ac t ed  by this result  and  we were  in teres ted  in u n d e r s t a n d i n g  

whe the r  this was an  i so la ted  p r o p e r t y  o r  whe the r  this result  cou ld  be a 
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special case of something more general. The results of this paper indicate 
that indeed there is a rich structure behind it. 

In order to make the paper more accessible, we work out our results 
explicitly for the classical Curie-Weiss model, although up to details 
everything can be performed for more general systems. (51 As is well 
known, the spins of the model are represented by the random variables 
a-={a, .=+l} . , .~A,  A = { I , 2  ..... N} in the Gibbs distribution #~.,)(.), 
defined by the Hamiltonian 

J 
HA(a ,h) -  2N ~" axay-- ~ h~a,. 

.x', y ~  A .),'~ A 

where hxe R, J>0;  i.e., the finite volume A measure is given by, for all 
fl = I/kT~ [~ +, 

1 

= zA( , h) y 
a , =  + I  

.,," ~ A 

e --flHA(a'h)x 

where X: a --, • and 

ZA(fl, h)= ~ e -tmA(~'h) 
a x  = 4:.1 

x E A  

is the partition function; hx is a pointwise magnetic field 
The partition function is easily computed to be 

/ N ' x  t/2 ( Nv 2 ) 
Z.dfl, h ) = ~ - ~ )  f dvexp - - - 2 - +  L ln{2ch[v(flJ)l/z+flhx]} (1) 

We are interested in the limit distribution of the random variable 

1 
F~A(a)= 1. " ~ (ax--mA)c~ qE[0,2rc)  (2) ' N/_+o 

. r E  A 

i.e., in the q-mode fluctuation of the magnetization; m A is the magnetiza- 
tion in the Gibbs measure 

m A  = 

In this paper we compute the characteristic function of the distribution 
of the random variable F~,,da): 

~b(t; fl, q, h) lim A = ltp. h (exp[itFq6,A(a)]) (3) 
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We are looking for a value 6 such that  this r andom variable has a non- 
trivial limiting distribution. 

This limit is studied in terms of the three parameters  fl or the 
temperature  T, the wave vector q, and the external field h. 

As far as the T dependence is concerned, there is not so much new in 
the sense that there exists a critical temperature  Tc = J/k > 0. We reproduce 
the well-known normal  Gaussian limit distribution for T >  T,. for all q 
and h. We are essentially interested in new probabil i ty distributions in the 
critical situation, i.e., for T =  T,.. 

In Section 2 we consider first the limit distribution (3) as a function 
of q, but with vanishing magnetic field h,. = 0. We get a general result which 
yields as particular cases the results o f  refs. 1, 2, and 4 for very special 
values of q, i.e., we obtained previous results in a unified scheme. Our  
results give a clear explanation for the appearance of Gauss ian  "internal 
fluctuations." 

In Section 3 we go one step further and we consider also the influence 
of the magnetic  field as a boundary  condition, i.e., we put h.,. = h/N ~, ct > O. 
This means that h ,  tends to zero when the number  of sites increases to 
infinity. At criticality it produces many  new distributions for F~(tr) and 
different critical indices 6:6  = ct/3 for ~ < 3/2, 6 = 1/4 for c~ > 3/2. 

In Section 4 we discuss the long-wavelength limit q = Z/N v, 7 > 0. The 
joint limits hx ~ 0 and q--* 0 lead again to new distributions and a new 
dependence of the index 6 on the parameters  ct and 7. 

We call a limit distribution normal  if 3 = 0 and abnormal  if 6 > 0; we 
call a distribution Gaussian if the characteristic function is of Gaussian 
type, i.e., quadrat ic  in the exponential,  even if 6 4: 0. Our  main results are 
that  for the q-mode fluctuations of the magnetizat ion (2) we obtain as a 
function of the parameters  q and h the following distributions: normal  and 
Gaussian (Theorems2.1 ,  2.2, 3.1, and 3.2), abnormal  and Gaussian 
(Theorem 3.3), and abnormal  non-Gauss ian  (Theorems 2.2, 3.4, and 3.5). 
Concerning these different types of probabil i ty distributions, apar t  from 
those of refs. 1, 2, and 4, some of them did show up in the physical 
literature, e.g., in refs. 2 and 6 in the context of critical fluctuations and 
probabil i ty theory, and they were looked upon as "spurious." In the pre- 
sent analysis, a more  unified presentat ion explains their occurrence in terms 
of the wave vector q and the magnetic field. We ment ion also ref. 7, where 
for spin glasses a so-called chaotic size dependence is discussed, indicating 
different types of probabil i ty laws. 

We find also a particular value ct,. = 3/2 for the parameter  ~, describing 
the vanishing of the field hx if N tends to infinity. For  ~ > :t,., the influence 
of the field is nonexistent. For  ~t ~<~,., the presence of h determines the 
degree of criticality 6 as well as the distribution, i.e., at  ~,. one gets a new 
type of transition for the critical fluctuations driven by ~. 
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In the long-wavelength limit (Section 4) we discovered a regime for 
which the magnetization fluctuation only exists for subsequences of the 
increasing number N, indicating an essential singularity for the long- 
wavelength susceptibility. 

2. ZERO M A G N E T I C  FIELD (h=O) 
If h = 0  in formula (1), then the partition function can be written as 

ZA(fl, O) = ~ fdvexp{ - -Nf (v ,  fl)} 

where f is the free energy density or the rate function in the Laplace 
method: 

0 2 

f(v, fl) = ~- - In ch v(pJ) 'a 

-= ~ ( 1 -  flJ) v2 + l  (flJ)2 v4-F O(v 6) 

Denote by tic the value tic = l/J; it corresponds to the inverse critical 
temperature Tc = 1/kflc. For T >  Tc 

and for T =  T,. 

f(v, fl) = �89 -- flJ) v 2 + O(v') (4) 

f(v,  ~c) = ~v" + O(v 6) (5) 

Let r be any continuous function on R; we compute 

e -Nf(v'#) do 
lium f d#~.o(V ) ~p(v), with d/~.o(V) = I e_Nf(v.ll)dv 

Then, using (4) or (5) and the standard Laplace argument, one gets 

lira f d#~.o(V)~p(v)=~o(O ) 

Denote for q ~ [0, 2~) 

1 
a , . N ( q ) = ~  ~ cos"qx (6) 

x E A  
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and denote 

a,(q) = lim a,.u(q); n = 1, 2, 3 .... (7) 

It is important to remark that one can distinguish essentially two choices 
of the "wave vector" q: ai(q) = 0 (i.e., q # 0) and al(q) ~ 0 (i.e., q = 0). In 
spite of the fact that the values of a2k+ ~(q)= 6q.O are evident, we prefer to 
keep the notation an(q) in the formulas, in order to make clear the deriva- 
tion and the results, as well as to suggest how the results can be extended 
to the case that the wave vector q depends on the volume N, a situation 
in which physicists are often interested (see Section 4). 

Now we compute the characteristic function (3) for h = 0 ,  i.e., for 
m A = 0" 

q~(t, fl, q, 0) = lira/z~, o (exp[ itF~.A(a ) ]) 
N 

~ dv 

x exp - - -~-+ ~ In 2 ch[v(flJ) 1/2 + itN -~1/2§ cos qx] 
x E A  

Using (6), one gets 

q, 0) = liNm ~ d/t~.o(V) exp {th[v(flJ) '/2] ~(t, itNI/2-aat,N(q) 

+ ch-2[otflJ) '/~] ~ ~,N,] a2.N(q) 

(it) 3 3~ 
+'-~-. N-  N-l/2a3.N(q)[ch-2v(flJ)l/2]' + ... } (8) 

Suppose now that q :~ 0, i.e., a2k+ ~(q)= 0 and a2(q)= 1/2; then the Laplace 
argument yields for all T>~ Tc that the distribution ~b(t, fl, q, 0) exists and 
is not trivial if and only if 6 = 0; in that case, it is given by 

~(t, fl, q, O)=exp {-a~(q) ~} (9) 

we have proved "the following result. 

T h e o r e m  2.1. If q~-0, i.e., a l ( q ) = 0  and a2(q)=l/2, then the 
probability distribution of the fluctuation Fg(tr) is normal (6 = 0) and of 
Gaussian type rformula (9)-I for all values of T>~ Tc. 
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This theorem generalizes the particular case treated in ref. 4, which 
can be understood in the above setting by choosing q (e.g., q =  rt) in the 
interval x E A =  [ I , 2 N ]  such that for an equal number of lattice points 
cos qx= 1 and cos qx= - 1 ,  i.e., al.2N(q) = 0  for all N. For this choice of q 
one gets 

1 
F~.2~a) = 2,/2+a [F~176 N((~) ] 

Therefore, Theorem 2.1 yields that the subsystems fluctuate coherently; 
Fg(a) is Gaussian in spite of the fact that F~ u(o) and ['~ blow up as 
N ~  ~ (see Theorem 2.2). 

In the language of physics, it should be remarked that the variance of 
the above fluctuation is the Fourier transform of the susceptibility at the 
point q. Heuristic physical arguments lead to the property that this suscep- 
tibility is always finite for q:/:0, even at the critical point. Theorem 2.1 is 
a first step toward a general rigorous proof of this property, because 
a~(q) = 0, if q r 0. It shows self-canceling of coherent non-Gaussian fluctua- 
tions corresponding to different parts of the system. 

Let us now compute the characteristic function (8) in the case 
a,(q)v~O, i.e., q = 0 .  Computing again formula (8), one gets for T >  T,. a 
nontrivial result if and only if 6 = 0, 

{~22[fl-Ja~(q)+a2(q)]} ~b(t,//, q, 0) = exp [_ l - / ~ J  (lo) 

On the other hand, if T =  T,,, then the limit (8) exists and is nontrivial if 
and only if 6 = 1/4. It is given by 

(~(t, [3, q, O) = S du exp[ - (u4/12) + itual(q)] 
du e x p ( -  (u4/12)) 

(11) 

We have obtained the following results: 

T h e o r e m  2.2. If q = 0 ,  i.e., a~(q)=a2(q)= 1, then the probability 
distribution of the random variable for the limit variable of 

1 
Fq.A(a) = Nl/2+,s E Ox cos qx 

X ~ A  

is normal (6 =0 )  and Gaussian (10) if T >  7",.; it is abnormal (~5 = 1/4) and 
non-Gaussian (11 ) if T =  7",.. �9 

The content of this theorem is in fact the case discussed in refs. 1 and 
2. We discussed only cases where q is fixed. However, the considerations 
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show that  also the case qN ~ 0 can be considered. In that  case there might 
be an interference between the quantities at.u(qN) and a2.,v(qu). This is 
even more  true if we take into account  a fading out external field, 
h,.(N) ~ 0. 

In the next section we discuss the q-mode fluctuation of the magnet iza-  
tion depending on the external parameters  h,-, x ~ A. 

3. THE M A G N E T I C  FIELD ( h - ~ 0 )  

In this case we put 

h.,. = N--~, ~x > 0 for all x e A  (12) 

i.e., we let the external magnetic field tend to zero following a power law 
in the volume, keeping the value of/~ constant.  We will distinguish here dif- 
ferent cases depending on the value of the parameter  c~. One can imagine 
that if ~ is large enough, the effect of the external field is vanishing, but for 

small enough, there might be an influence on the critical index 3 as well 
as on the limit probabil i ty  distribution. In fact that is what we are going 
to demonstrate .  

After substitution of (12) in the parti t ion function (1) one gets 

[ N \  1/2 
ZA(fl, hN- ' )=~-~n  ) 2 N f d v e x p { - N f ( v ,  fl, N~)} (13) 

where 

v2 I f (v ,  fl,/~N - ' )  = ~ - - - I n  ch v(flJ) '/2 + ~-~ (14} 

For  fixed N, consider the variational problem, related to the Laplace 
arguments  for (13): 

inf f ( f l ,  v, [~N-')= f(fl ,  O, [TN-') (15) 
t ,  

where f =  f ( f l , / ~ N - ' )  is its solution. The value ~ does depend on the 
volume parameter  N ", while 

lim f(fl <<, fl,., [TN ~) = lim(flJ) '/z m A = 0 
N N 

For  the r andom variable (2) we compute  again the characteristic 
function (3): 
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(~(t, fl, q,h)= lira Z~(/~,/~) ~ dvexp 
N ~ c ~  2 

I fl/~ it 1 + 2 ln2ch  v(~J)'/2+~-~+NJ---iT~cosqx 
xEA 

where ZA(fl,/~) is given by.formula (13). 
As in Section 2, we can distinguish the two cases q r 0 and q = 0. 
Again we start with the case of the wave vector q r  i.e., a~(q)--0 

and a2(q)>0. We expand the In ch[- . . ]  in (16) around the value v(BJ) ~/2 
and get 

~( t , /~ ,q ,h)=l im dvexp - N  -~-lnchv(flJ) 'a +[thv(~J)]~flN '-~ 

' t)-' + g [ c h - 2  v ( ~ J ) ~ / 2 ] ( ~ ) 2  N '  - 2, + . . .  

x f  dvexp{ -N[~- lnchv (PJ)  '/2] 

~ 1 + Eth v(~J) '/2] ~h N'-  +-~ [ch -2 v(~J) '/2] 

• [(fl/~)2 N 1-2~+ (it)z N-2aa2.N(q)] + ... } 

If T >  To, using (4) and the transformation v ~ = u, one checks that 
the limit (16) exists if and only if 6 = 0  for all values of c~>0 and that it 
is given by 

t 2 
az(q)] (17) (k(t, fl, q ,h )=exp[-  -~ 

A 

If T= T c, using (5) and the transformation vN t/4= u, one checks the 
existence of the limit (16) if and only if 6 = 0, again for all values of c< > 0, 
and that it is given again by the expression (17). we have proved the 
following result (cf. Theorem 2.1 ): 

Theorem 3.1. If q :~0, i.e., a~(q)---0 and a2(q)= 1/2, then the limit 
probability distribution of the magnetization in an external field hx = h/N ~, 
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ct>0, is normal (6=0)  and Gaussian (17) for all values of 0t>0 and all 
temperatures T~> To. II 

Next we analyze the case q = 0, i.e., a l (q )~  0. Here we distinguish the 
cases T>  T c and T=  To. First we treat the case T>  To. 

It is immediately checked that the solution t7 of the variational 
problem (15) yields 

Now, as T>  T~ or flJ< 1, this gives the following expansion of 6 for 
large N: 

~( I - f l J )  = N-- ~ ( f l J ) ~ / 2  + . . .  ( 1 9 )  

and mA(1 - flJ) = fl(f(N ~') + .... Therefore, one gets 

~ ]  - -  th ... th Iv(flJ) + ~-g] = (flJ) ( v -  ~) + [ v ( f l J )  '/~ + - ,/~ f lh  ~/~ 

The numerator of (16) has then the following expansion: 

f dvexp(-N{~-lnehlv([3J) ' /2+~] } 

- itm,tNI/2-~al.N(q)) (2o) 

Using also the expansion 

- Inch 

- --(v-v)2 { l -flJ ch-2 [ 6(flJ)'/2 + ~ ] } + " "  
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and the rescaling x,/-N u = v - f ,  we find that Eq. (16) becomes equal to, for 
g > 0 ,  

r fl, q,/*) = lium ( f ' ~ - e ) ' / ~  du 
\ J - .  + e)./-~ 

U2 [ l _ ( - ,  x e x p  {- -  ~- \ N ' ( l - f l J ) ) ] } )  

t2 a2.N(q) 
+ itN-a(flJ) 1/2 al.N(q) U-- 2 N za 

x ch- '- [ (-~N+ ~) (flJ)l/'- + fl~] + ""}  

Using (19) and again the Laplace argument, one gets that this limit exists 
for all ~ > 0, and is not trivial if and only if 6 = 0. It is given by the normal 
Gaussian characteristic function 

t2[fl-Ja~(q) +a2(q)]} 
r fl, q,h)=exp { -  -2 L 1- f lJ  

i.e., we have proved the following expected result (cf. Theorem 2.2): 

(21) 

T h e o r e m  3.2. If q is such that a , ( q ) # 0 ,  then the limit probability 
distribution of the fluctuation F~{(a) in the scaled external field h,. = h/N ~, 

> 0, is normal (6 = 0) and Gaussian (21) for all values of ~ > 0 and for 
all temperatures T >  T c. II 

We are left with the case T =  T,. or fl,.J=l. With respect to the 
previous case there are some essential changes. We start with the expansion 
of the free energy functional (14): 

where 

1 D~ ~ f(v, fl,., hN - ~) = f ( &  fl,., hN =) + ~ (v - ~)2 

1 D ~  1 r~14~ + ~ ( v - 0 )  3 + . ( v - 0 ) " _ u  + "'" 

D~(~ ) = l - ch - 2 ( ~ + ~ )  

(22) 

(23) 
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D~)(~)= -2ch -2  (O ' fl~h'~ th (24) 

D ~ ) ( c Q = 2 c h - 4 ( f + f l - ~ ) - 4 c h - 2 ( O + ~ - - ~ ) t h 2 ( 6  " [3cf?~ + --~--) (25) 

As now 1 =tic J, the first-order expansion of Eq. (18) is no longer 
valid. Instead of Eq. (19) one gets now 

• = \  N ~ j + ..- (26) 

Using this equation for ~ as a function of N, one can derive the behavior 
of the coefficient D~)(~). One finds 

D~'(~) (3fl"h'] 2/3 
= \ - - - ~ - 2  + . - .  (27) 

for large N. In view of the applicability of the Laplace argument, one has 
to look at the behavior l imu_~  ND~)(ot). The question is whether the 
quadratic term in (22) is dominant or not. If ND~I(o~) ~ oo for N ~  oo, 
then the quadratic term is dominant; it is clear that this fact depends on 
the value of ~. If ~ < 3/2, then ND~(a)  ~ oo. Let us first treat this case. 

Using the expansions (20) and (22), and the fact that the quadratic 
term is dominant, together with the scaling ( N D ~ )  1/2 ( v -O)=u ,  we find 
that the limit (16) becomes for any e > 0 

~(t, fl,.,q,h) 

= lim F[ ~N~ " ] - '  'N~176 du e-  ,-/2 l du 
N L a -  (ND(~I)I/2(t + o) d _  (ND(2N))I/2(r + vl 

u 2 ituax(q) t 2 
xexp - --2 + N~(D~I) 1/2 2 

2 U - - ~ - +  . . . }  

By (27) one gets a nontrivial limit distribution if the index 6 is such that 
N~(D~)~/2 _~ N~- ~/3 tends to a nonzero constant, i.e., if and only if ~ = e/3. 
The limit is giveh by 

t2 a2(q) ] 
ok(t, B,, q,/~) = exp 2 ( 3/3,.h )2/3 J (28) 

Therefore, we have proved the following result: 

822/75/5-6-24 
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T h e o r e m  3.3. If q = 0 ,  i.e., a l ( q ) = a 2 ( q ) =  1, then the limit distri- 
bution of the q-mode magnetization fluctuation in the scaled external field 
hx = f2/N ~, ~t > 0, at T =  Tc is abnormal with ~ = 0t/3 for all ~t < 3/2, but 
Gauss|an (28). I 

Remark that the critical index 6 takes all values between zero and one- 
half, depending linearly on the parameter ct. This means that the degree t5 
of criticality is influenced by the scaling of the external field. Remark also 
that the limit probability distribution is Gauss|an for ct < 3/2. The presence 
of the magnetic field hx generates the Gauss|an character, if it does not fall 
off too fast; the parameter 0t seems to have a critical value ct~ = 3/2 for 
Gaussianity. This will become clear from what follows. 

Now we deal with the case that 0t >/3/2. Using again the expansions 
(20) and (22), performing the rescaling N ( v - t 3 ) 4 =  u 4, and using the fact 
that lim~cD~)=2, we find that the limit (16) can be written as 

~( t, fl~, q, fz) 

(~ du exp{ - � 8 9  ) - (u3/3! ) N1/4D(~ ~ - I-~U4~ 
= lim \ + "'" + i tua l (q )Nl /4 -~}  ] (29) 

~r ~duexp{ - �89 2 x / ~ D ~ ' -  (u3/3!) N' /4D~ ' -  i~u 4 + . . .  } 

Note that if a > 3/2, then 

lim x//N D~ ~ = lim N 1/2-2~/3 = 0 
N N 

lim NI/4D~) = lim N 1/4- ~/3 = 0 
N N 

and the coefficients of the terms of order higher than four also vanish in 
(29). Therefore, the limit (29) exists and yields a nontrivial probability 
distribution if and only if di = 1/4. The limit is given by [cf. (11)]: 

q~(t, tic, q, fl) = S du exp{ -(u4/12) + ituaj(q) } 
du exp{ -(u4/12)} (30) 

We have proved the following result: 

Theorem 3.4. For q = 0 ,  i.e., a t (q )=  1, the limit probability dis- 
tribution of the q-mode magnetization fluctuation in the scaled external 
field hx = ~/N ~ with ~t > 3/2 at T =  T c is abnormal with ~ = 1/4 and non- 
Gauss|an (30). | 

This theorem yields the same result as in the case h = 0 (see refs. 1 and 
2 and Theorem 2.2) and this for all values of at > 3/2. If the external field 



Critical Fluctuations in Curie-Weiss Model 1149 

drops off with the volume fast enough, the influence of the external field 
is nonexistent. Remark that the index t5 = 1/4, indicating the degree of 
criticality, is here independent of ct as long as ~t > 3/2. 

Finally it remains to look at the marginal or critical value c L = 3/2. In 
this case one has 

lim x / ~  D~) = A 2 = (3flcfl) 2/3 
N 

lim N~/'~D~) = A 3 = (3flfl~) 1/3 
N 

and the coefficient of the terms of order greater than four vanish in (29) in 
the limit N--* oo. Again the limit (29) exists and is nontrivial if and only if 
6 = 1/4; it is now given by 

(~(t, fl,.,q, fO =~duexp{-(u2/2) A2+(u3/3!)A3-u'/12+itual(q)} (31) 
du exp{ - (u2/2) A2 + ( u 3 / 3 ! )  A3  - u4/12 } 

We have proved the following result: 

Theorem 3.5. If q=O, such that a~(q)= 1, the limit probability 
distribution of the q-mode magnetization fluctuation in the scaled external 
field hx = fl/N 3/2 at T =  T~ is abnormal with 6 = 1/4 and non-Gaussian, 
defined by the expression (31). 

4. T H E  L O N G - W A V E L E N G T H  L I M I T  ( q - - , O )  

The long-wavelength limit is the natural physical language to describe 
the critical susceptibility limq ~ o g(Tc, q) = oo. 

As above, suppose that this limit is taken by the rate exponent 1' I> 0 
and the amplitude q, i.e., take qN=--,~N -~'. Then one gets that for N ~  

f l+c~N-r'~'l+ . . . ;  y > l  [ F l ( y > l ) > 0 ]  

at.N(qu)=~(singl)/~+c~N-r2~+.-.; y = l  [F2(~ = 1 ) > 0 ]  (32) 

[N-~-~ '~  sin(~Nl-~') + ..-; ~,< 1 

One easily gets the asymptotics for azu(q~), a3.N(qN), etc., from the 
trigonometric formulas. Let limu al.N(q,v)= al(q). Then we get [cf. (6)] 

~2(0) = lim a2,u(qu) = �89 + ~,(20)] > 0 
N 

(33) 
63(t~) = lim a3.u(qN) = �88 + 6,(3#)], etc. 

N 
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Now we can use to advantage our notations in Section 2 to calculate 
the limiting characteristic function 

~(t, fl, q, 0)-= lim la~.o(exp[itFq~(tr)]) 
N 

for T~> To. Using the asymptotics (32) and (33) in the formula (8), we get 
for T >  T c [cf. (10)] 

(34) 

while for T =  T,. we have to distinguish three cases, yielding 

/ 
| .... I du exp{ - ( u 4 / 1 2 ) +  itu s in(gN' -  ~') }. 

q, 0)= ~ I du exp{ - ( u 4 / 1 2 ) +  itua,(9)} 
~(t'flc' | Idu{-u4/12} ; 

1 
I ?>11, 9v~nn, n~Z l 

I 

(351 

It is clear that (34), (35), with (32), (33) for 9e  R interpolate the cases (9) 
and (11) for ~ < 3/4 and y t> 1. Therefore, the statements of Theorems 2.1 
and 2.2 are valid in a more general situation qu--,0,  but now for 
~(t, fl, q, 0). For ~= 1 and O=nn(n~7/l\{O}) we get again a "Papangelou 
case, "(4~ the fluctuations are normal (6 = 0). Again they are the difference 
of two coherent and compensating [sin (~ = 0, (32)] abnormal fluctuations 
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of two subsystems; see also Theorem 2.1 and the remarks following it. For 
3/4~<y< 1 we have no limit in (35), except for subsequences. This is an 
indication of an "essential singularity" for the long-wavelength magnetic 
fluctuations at T =  T~. The situation gets even more complicated for the 
fading out external field. 

As long as y >/1, we can easily generalize the statement of Theorem 3.2 
[cf. (21)]: 

tz r.[3-J6~(q) t- 6~(Ct)]} 
~(t,/~, O,/~)=exp { -  2"1 1 - / ~ J  (36) 

The same formula covers the case y < 1 for T >  Tc [cf. (17)], i.e., part of 
Theorem 3.1. 

Using the arguments of Theorem 3.3, one can check this statement for 
~,>~1 at T=T,.: 

O, 1;)= exp { t 2 6h0___2 
2 (3/3c/7t)2/3 J 

(37) 

In this case 6 = 0~/3 (~ < 3/2) [cf. (28)]. 
But for y < 1 the situation changes drastically: 

(a) Let ~ < 3/2 and ~/3 + y -  1 > 0. Then one gets for 6 = ~/3 + ? -  1 
[cf. (28) and (32)] that 

t2 sin2(0N 1-~)~'' 
~(t,/~c, q,/~) = "lim exp - ~ ~ 2 ~  3 (38) 

This means that we have no limit for the characteristic function of the 
magnetic fluctuations but different limits for subsequences {Nj ~ oo }. 

For ~ < 3/2 and c~/3 + y - 1 < 0, one gets [cf. (17)] 

t 2 
(39) 

with 62(0)= 1/2. 

(b) Let a > 3/2. Then using (29), we get the first two eases described 
by (35). 

(c) Let ~=3/2.  Then by formula (31) and the arguments used in 
(35) we again get the two first cases indicated there, y < 3/4 and 3/4 ~< y < 1, 
but for the distribution function defined by A2 and A3 ['cf. (31) and (35)]. 
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5. C O N C L U D I N G  R E M A R K S  

Theorems 3.3-3.5 indicate very explicitly the importance of the scaling 
parameter ct of the external field, which plays the role of  a boundary  condi- 
tion. For  ct > 3/2 the influence of the field is nonexistent; for ct < 3/2 the 
critical index ~ characterizing the abnormali ty of the fluctuations depends 
on ct. Such a phenomenon was also already observed in the study of 
quantum systems, cs~ Finally ct c = 3/2 is a critical value. 

As is also clear from the above, different mean-field-type models can 
be characterized by different rate functions. On  the other hand, for mean 
fields there is a generally accepted form of rate function, usually called the 
Ginzburg -Landau  rate function. In spite of the fact that the latter yields 
the same criticality (e.g., also ctc=3/2),  the distributions of the random 
variables, like fluctuations, are different. In particular, the rigorous 
Curie-Weiss model computat ions  obtained above yield a different charac- 
teristic function than the Ginzburg -Landau  one. Typical for the latter is 
that it is an even rate function defining the criticality, whereas formula (31) 
does not yield an even one. 

Finally, we did not discuss the region T <  To. In this case one can use 
the above techniques, but now with h x =  +(h/N=),  in order to recover the 
two extremal measures (see, e.g., ref. 9). One gets straightforwardly that the 
q-mode magnetization fluctuations are always normal  and Gaussian. 

The long-wavelength limit is now the next interesting question (i.e., 
q ~ 0). There are many ways to take this limit. In Section 4 we gave a first 
discussion of it, by taking qN = 6t N - v ,  N ~  oo and ~ fixed. Already we find 
there that for y satisfying 3/4 ~< y < 1 there is no limit distribution except for 
subsequences. The combinat ion of the long-wavelength limit (~N -~) with 
the vanishing boundary  condition (/~N -=) at T =  T c indicates already the 
richness of the structure. Here also the situation is not completely cleared 
up and calls for elaboration. It remains an interesting point. 
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